Product Description
Blue Color Air CHINAMFG Supplier In china
Key Parameters:
| MODEL | POWER (KW, HP) |
PRESSURE Bar |
CAPACITY (m³/min) | WEIGHT Kg |
OUTLET POPE DIAMATER |
NOISE LEVEL dB |
| AMQAM7.5A | 5.5KW, 7.5HP | 7/8/10 Bar | 0.65/0.60/0.55 | 380 | G3/4 | 65 |
| AMQM10A | 7.5KW, 10HP | 7/8/10 Bar | 1.05/0.99/0.90 | 380 | G3/4 | 65 |
| AMQM15A | 11KW, 15HP | 7/8/10 Bar | 1.68/1.59/1.45 | 505 | G3/4 | 65 |
| AMQM20A | 15KW, 20HP | 7/8/10 Bar | 2.20/2.10/1.91 | 505 | G3/4 | 65 |
| AMQPM7.5A | 5.5KW, 7.5HP | 7/8/10/13 Bar | 0.65/0.60/0.55/0.45 | 380 | G3/4 | 65 |
| AMQPM10A | 7.5KW, 10HP | 7/8/10/13 Bar | 1.05/0.99/0.90/0.75 | 380 | G3/4 | 65 |
| AMQPM15A | 11KW, 15HP | 7/8/10/13/15 Bar | 1.68/1.59/1.45/1.30/1.14 | 505 | G3/4 | 65 |
| AMQPM20A | 15KW, 20HP | 7/8/10/13/15 Bar | 2.20/2.10/1.91/1.74/1.50 | 505 | G3/4 | 65 |
About CHINAMFG System:
1)The simple structure and less components make it an easy maintenance with low cost.
2)The Robot Palletizer takes less space and performs more flexible and accurate.
3)All the control can be implemented through a touch screen of control box for an easy operation.
4)The robot can work continuously for a long time, saving the laborforce a lot and being more productive.
Warranty:
One year for core and permanent warranty for firmware.
After-sales service:
Engineers available to serve oversea.
Q: Are you trading company or manufacturer?
A: We are a professional manufacturer, we are happy welcome clients from CHINAMFG to visit our factory and cooperate with us.
Q: How long is your delivery time?
A: Generally it is take 2 weeks.
Q: What’s your MOQ?
Q: Our MOQ only 1 set.
If you have any questions about the robot arm problem, please do not hesitate to contact us! /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Video Service |
|---|---|
| Warranty: | 12months |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
What is the role of air compressors in manufacturing and industrial processes?
Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:
1. Pneumatic Tools and Equipment:
Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.
2. Automation and Control Systems:
Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.
3. Air Blowing and Cleaning:
Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.
4. Air Separation and Gas Generation:
Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.
5. HVAC Systems:
Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.
6. Air Compression for Storage and Transport:
Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.
7. Process Instrumentation:
Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.
8. Material Handling and Pneumatic Conveying:
In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.
Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2024-02-06
China supplier Hot Sale 30kw Non-Inductive Pm VSD Screw Air Compressor manufacturer
Product Description
Hot Sale 30kw Non-Inductive Pm VSD Screw Air Compressor
Technical Parameters Of PM Variable speed screw air compressor:
| Model | WZS-40EVA |
| Air Flow/Working pressure | 5.0m3/min @ 8bar |
| 4.4m3/min @ 10bar | |
| Cooling type of COMPRESSOR | Air cooling |
| Cooling type of MOTOR | Air cooling |
| Driven method | Direct Driven |
| Start way | Soft VSD Start |
| VSD inverter | HOLIP / VEICHI |
| Exhaust Temp. | < ambient temp. +8 degrees |
| Oil content | <2ppm |
| Noise | 68±2 dB(A) |
| Power | 380VAC/3ph/0~200Hz |
| Motor power | 30kw/40hp |
| Dimension | 1380*850*1150mm |
| Weight | 680kg |
| Model | Power (KW) |
Pressure (Bar) |
Air flow (m³/min) |
Noise dB(A) |
Compression stages | Outlet diameter (Inch) |
Dimension (mm) |
Weight (kg) |
||
| L | W | H | ||||||||
| WZS-15EVA | 11 | 8 | 1.8 | 62±2 | Single | 1″ | 1300 | 860 | 1030 | 380 |
| 10 | 1.6 | |||||||||
| WZS-20EVA | 15 | 8 | 2.2 | 63±2 | Single | 1″ | 1300 | 860 | 1030 | 480 |
| 10 | 2.0 | |||||||||
| WZS-30EVA | 22 | 8 | 3.8 | 66±2 | Single | 1¼” | 1380 | 850 | 1150 | 620 |
| 10 | 3.0 | |||||||||
| WZS-40EVA | 30 | 8 | 5.0 | 68±2 | Single | 1¾” | 1380 | 850 | 1150 | 680 |
| 10 | 4.4 | |||||||||
| WZS-50EVA | 37 | 8 | 6.8 | 68±2 | Single | 1½” | 1600 | 1000 | 1370 | 850 |
| 10 | 5.4 | |||||||||
| WZS-60EVA | 45 | 8 | 8.0 | 68±2 | Single | 1½” | 1600 | 1000 | 1370 | 880 |
| 10 | 6.8 | |||||||||
| WZS-75EVA | 55 | 8 | 9.7 | 69±2 | Single | 2″ | 1700 | 1270 | 1500 | 1350 |
| 10 | 8.6 | |||||||||
| WZS-100EVA | 75 | 8 | 13.2 | 70±2 | Single | 2″ | 2150 | 1300 | 1700 | 1650 |
| 10 | 11.6 | |||||||||
| WZS-125EVA | 90 | 8 | 15.0 | 70±2 | Single | 2″ | 2150 | 1100 | 1500 | 1950 |
| 10 | 14.6 | |||||||||
| WZS-150EVA | 110 | 8 | 19.0 | 71±2 | Single | DN65 | 2550 | 1650 | 1850 | 2600 |
| 10 | 17.0 | |||||||||
| WZS-180EVA | 132 | 8 | 23.0 | 72±2 | Single | DN65 | 2550 | 1650 | 1850 | 2880 |
| 10 | 20.0 | |||||||||
| WZS-200EVA | 160 | 8 | 26.5 | 75±2 | Single | DN80 | 2950 | 1800 | 1850 | 3200 |
| 10 | 22.5 | |||||||||
Before quotation:
1.Before quoting, what should users offer?
1).Discharge pressure (Bar, Mpa or Psi)
2).Air discharge/Air flow/Air capacity (m3/min or CFM)
3).Power supply (220/380V, 50/60Hz, 3Phase)
2.If I don’t know the pressure and air flow, what should I do?
1).Take the picture of nameplate, we will advise the suitable air compressor to you.
2).Tell us what industry you are, we can advise the suitable 1 (so as to air tank / air dryer / air filters).
High Efficiency PM Motor and Energy Saving
*With the high-performance permanent magnet material, PM motor won’t lose magnetism even under 120°c and can run for more than 15 years.
*No motor bearing: permanent magnet rotors is installed directly on the stretch out shaft of Male rotor. This structure doesn’t have the bearing and eliminates the motor bearing fault.
*Comparing to normal variable speed motor, the permanent magnet synchronous motor performs with even better energy efficiency. Especially in the low-speed condition, it can still maintain a high motor efficiency.
SHIPPING
Delivery: time 5-25 working days after payment receipt confirmed(based on actual quantity)
packing:standard export packing. or customized packing as your
Professional: goods shipping forwarder.
FAQ
Q: OEM/ODM, or customers logo printed is available?
Yes, OEM/ODM, customers logo is welcomed.
Q: Delivery date?
Usually 5-25 workdays after receiving deposit, specific delivery date based on order quantity
Q: what’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, otherpayment terms also can be discussed based on our cooperation.
Q: How to control your quality?
We have professional QC team, control the quality during the mass production and inspectthe completely goods before shipping.
Q: If we don’t have shipping forwarder in China, would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.
Q: come to China before, can you be my guide in China?
We are happy to provide you orservice, such as booking ticket, pick up at the airport, booking hotel, accompany visiting market or factory
Thank you very much for viewing this page, and wish you a nice day!
Contacts:Vicky Liu
Mob: -173-1655-1856
Web: compressor
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-less |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2024-02-04
China manufacturer Luy100-10 10bar 10m3/Min 145psi 350cfm 96kw 130HP CHINAMFG Mobile Screw Portable Mining Air Compressor Suppliers with high quality
Product Description
| Model Name | LUY050-7 | LUY085-14 | LUY100-10 | LUY100-12 | LUY118-7 | LUY120-14 | LUY130-13 | LUY150-15 | LUY160-17 | LUY235-9 | LUY220-10 |
| Working pressure, bar(psi) | 7 (100) | 14 (205) | 10 (150) | 12 (175) | 7 (100) | 14 (205) | 13(190) | 15 (220) | 17 (250) | 8.6 (125) | 10 (150) |
| Flow, l/s|cfm|m3/min | 83|177|5 | 142|300|8.5 | 167|353|10 | 167|353|10 | 197|420|11.8 | 200|424|12 | 217|460|13 | 250|530|15 | 267|565|16 | 396|830|23.5 | 367|780|22 |
| Noise sound level (at 7m distance, dBA ) | 70±3 | 79±3 | 79±3 | 79±3 | 79±3 | 83±3 | 83±3 | 83±3 | 83±3 | 79±3 | 79±3 |
| Fuel tank capacity, l | 67 | 185 | 120 | 120 | 120 | 180 | 180 | 250 | 250 | 300 | 300 |
| Compressor oil capacity, l | 8 | 25 | 26 | 26 | 26 | 23 | 30 | 32 | 32 | 55 | 55 |
| Outlet valves, qty x size | 3xG3/4 | 3xG3/4 1xG1 1/2 | 3xG3/4 1xG1 1/3 | 3xG3/4 1xG1 1/4 | 3xG3/4 1xG1 1/5 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 |
| Engine exhuast emission | Tier 3 | Tier 3 | Tier 3 | Tier 3 | Tier 2 | Tier 2 | |||||
| Engine maker | Kubota | Cummins | Cummins | Cummins | Cummins | Yuchai | Cummins | Yuchai | Yuchai | Cummins | Cummins |
| Engine model | V1505T | 4BTAA3.9-C125 | YC4A130-H311 | YC4A130-H311 | YC4A130-H311 | YC6J175-H301 | QSB5.9-C180-31 | YC6A205-H300 | YC6A240-H301 | 6CTA8.3-C260 | 6CTA8.3-C260 |
| Engine power, Kw | 33 | 93 | 96 | 96 | 96 | 129 | 132 | 151 | 176 | 194 | 194 |
| Norminal engine speed, rpm | 2950 | 2300 | 2300 | 2300 | 2300 | 2300 | 2400 | 2050 | 1950 | 2000 | 2000 |
| Unloading engine speed, rpm | 1950 | 1500 | 1400 | 1400 | 1400 | 1400 | 1400 | 1200 | 1200 | 1500 | 1500 |
| Engine inspiration | torbue charger | torbue charger | torbue charger | torbue charger | torbue charger | torbue | torbue | torbue | torbue | torbue | torbue |
| Length, mm | 2960 | 3700 | 3700 | 3700 | 3700 | 4322 | 3000 | 4322 | 4322 | 3780 | 3780 |
| Width, mm | 1350 | 1790 | 1790 | 1790 | 1790 | 1950 | 2000 | 1950 | 1950 | 1950 | 1950 |
| Height, mm | 1420 | 1900 | 1900 | 1900 | 1900 | 1980 | 2190 | 1980 | 1980 | 2260 | 2260 |
| Weight, kg | 750 | 1650 | 1650 | 1650 | 1650 | 2250 | 1990 | 2550 | 2550 | 2990 | 2990 |
| Model Name | LUY200-10 | LUY170-17 | LUY180-19 | LUY180-20 | LUY210-17 | LUY230-14 | LUY250-12 | LUY270-10 | LUY290-9 | LUY215-21 | LUY290-23 |
| Working pressure, bar(psi) | 10(150) | 17(250) | 19 (275) | 20(290) | 17 (250) | 14 (205) | 12(175) | 10(150) | 8.6(125) | 21(305) | 23(335) |
| Flow, l/s|cfm|m3/min | 336|706|20 | 286|600|17 | 300|635|18 | 300|635|18 | 350|745|21 | 386|815|23 | 417|885|25 | 450|955|27 | 486|1571|29 | 357|760|21.5 | 486|1571|29 |
| Noise sound level (at 7m distance, dBA ) | 79±3 | 79±3 | 83±3 | 83±3 | 83±3 | 79±3 | 79±3 | 79±3 | 79±3 | 79±3 | 83±3 |
| Fuel tank capacity, l | 300 | 300 | 300 | 325 | 300 | 470 | 470 | 470 | 470 | 512 | 500 |
| Compressor oil capacity, l | 55 | 55 | 55 | 60 | 55 | 65 | 65 | 65 | 65 | 75 | 75 |
| Outlet valves, qty x size | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 | 1*G2 1*G3/4 |
| Engine exhuast emission | Tier 2 | Tier 2 | Tier 3 | Tier 3 | Tier 3 | Tier 3 | Tier 3 | Tier 3 | Tier 3 | Tier 3 | Tier 3 |
| Engine maker | Cummins | Cummins | Yuchai | Cummins | Yuchai | Cummins | Cummins | Cummins | Cummins | Cummins | Yuchai |
| Engine model | 6CTA8.3-C260 | 6CTA8.3-C260 | YC6A260-H300 | QSB6.7-C260-32 | YC6A260-H300 | QSL8.9-C325-30 | QSL8.9-C325-30 | QSL8.9-C325-30 | QSL8.9-C325-30 | QSL8.9-C325-30 | YC6MK340-H300 |
| Engine power, Kw | 194 | 194 | 191 | 191 | 191 | 242 | 242 | 242 | 242 | 242 | 250 |
| Norminal engine speed, rpm | 2000 | 2000 | 1900 | 2000 | 1900 | 2000 | 2000 | 2000 | 2000 | 2000 | 1900 |
| Unloading engine speed, rpm | 1500 | 1500 | 1200 | 1300 | 1200 | 1300 | 1300 | 1300 | 1300 | 1300 | 1300 |
| Engine inspiration | torbue | torbue | torbue | torbue | torbue | torbue | torbue | torbue | charger | torbue charger torbue charger | torbue |
| Length, mm | 3780 | 3780 | 4404 | 4550 | 4404 | 5260 | 5260 | 5260 | 5260 | 5260 | 3850 |
| Width, mm | 1950 | 1950 | 1950 | 1770 | 1950 | 1800 | 1800 | 1800 | 1800 | 2040 | 2100 |
| Height, mm | 2260 | 2260 | 2296 | 2230 | 2270 | 2630 | 2630 | 2630 | 2630 | 2630 | 2690 |
| Weight, kg | 2990 | 2990 | 3330 | 3920 | 3330 | 4835 | 4835 | 4835 | 4835 | 4850 | 4100 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Video Technical Support, Online Support, Spare PAR |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Cylinder Position: | / |
| Customization: |
Available
|
|
|---|
.webp)
Are there special considerations for air compressor installations in remote areas?
Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:
1. Power Source:
Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.
2. Environmental Conditions:
Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.
3. Accessibility and Transport:
Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.
4. Maintenance and Service:
In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.
5. Fuel and Lubricants:
For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.
6. Noise and Environmental Impact:
Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.
7. Communication and Remote Monitoring:
Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.
By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-02-03
China manufacturer CHINAMFG Sh-220/8 High Quality 55kw 75HP Diesel Driven Portable Screw Air Compressor for Mining Drilling Rig manufacturer
Product Description
Q1: What information do I need to provide to get the suitable machine?
1. How much air delivery capacity ( Unit:CFM or M3/Min )
2 How much working pressure ( Unit:PSI, Bar or Mpa )
3.What is the voltage and frequency of my country of residence ( V/Hz )
4. Whether I need other accessories such as air tank, filters and/or air dryers.
Tell us the answer, we will offer scheme for you!
Q2: What are the general unit conversion?
1bar = 0.1Mpa = 14.5psi 1m³/min = 35.32cfm 1KW = 1.34HP
Q3: Are you factory or trading company?
We are factory. Our factory is located in 39 Xihu (West Lake) Dis. Rd, HangZhou, ZHangZhoug
Q4: Which trade term can you accept?
FOB, CIF, CFR, EXW, etc.
Q5: How long will you take to arrange production?
15 days for Regular Products, 35 days for Customizing Models
SPECIFICATION
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Operation Training; Maintenance |
|---|---|
| Warranty: | 2-Year-Warranty |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
| Installation Type: | Movable Type |
| Samples: |
US$ 8800/set
1 set(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
How are air compressors employed in the mining industry?
Air compressors play a crucial role in the mining industry, providing reliable and efficient power for various mining operations. Here are some common applications of air compressors in mining:
1. Exploration and Drilling:
Air compressors are used during exploration and drilling activities in the mining industry. Compressed air is used to power drilling rigs, pneumatic hammers, and other drilling equipment. The high-pressure air generated by the compressor helps in drilling boreholes, extracting core samples, and exploring potential mineral deposits.
2. Ventilation and Air Quality Control:
Air compressors are employed in underground mining to provide ventilation and control air quality. Compressed air is used to operate ventilation fans and air circulation systems, ensuring adequate airflow and removing harmful gases, dust, and fumes from the mining tunnels and work areas.
3. Material Conveyance:
In mining operations, air compressors are used for material conveyance. Pneumatic systems powered by air compressors are utilized to transport materials such as coal, ore, and other minerals. Compressed air is used to operate pneumatic conveyors, pumps, and material handling equipment, allowing for efficient and controlled movement of bulk materials.
4. Dust Suppression:
Air compressors are employed for dust suppression in mining areas. Compressed air is used to spray water or other suppressants to control dust generated during mining activities. This helps in maintaining a safe and healthy work environment, reducing the risks associated with dust inhalation and improving visibility.
5. Instrumentation and Control:
Air compressors are used for instrumentation and control purposes in mining operations. Compressed air is utilized to power pneumatic control systems, control valves, and actuators. These systems regulate the flow of fluids, control equipment movements, and ensure the proper functioning of various mining processes.
6. Explosive Applications:
In mining, air compressors are used for explosive applications. Compressed air is employed to power pneumatic tools used for rock fragmentation, such as rock drills and pneumatic breakers. The controlled power of compressed air enables safe and efficient rock breaking without the need for traditional explosives.
7. Maintenance and Repair:
Air compressors are essential for maintenance and repair activities in the mining industry. Compressed air is used for cleaning machinery, removing debris, and powering pneumatic tools for equipment maintenance and repair tasks. The versatility and portability of air compressors make them valuable assets in maintaining mining equipment.
It is important to note that different mining operations may have specific requirements and considerations when selecting and using air compressors. The size, capacity, and features of air compressors can vary based on the specific mining application and environmental conditions.
By utilizing air compressors effectively, the mining industry can benefit from increased productivity, improved safety, and efficient operation of various mining processes.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2024-01-31
China factory CHINAMFG Model RC-1012 10L Industrial High Pressure Electric Silent Air Compressor Machine manufacturer
Product Description
Ronix Model RC-2512 25L Industrial High Pressure Electric Silent Air Compressor Machine
OIL-FREE
| Battery Voltage | 220V | Frequency | 50hz |
| Air delivery | 80L/Min | Tank capacity | 10L |
| No load speed | 2800RPM | Power | 1.7 HP |
Ronix is the international brand specialized in different kinds of tools such as Hand tools, Power Tools, Air Tools, Wood Working Tools, Cutting Tools, Welding Tools and Accessories for over 10 years with the premium quality collection of the tools which make CHINAMFG as the unique tools brand in the world on the basis of Variety.
Ronix tries to get the satisfaction of all users by providing Premium Quality products and services in the field of Hand Tools, Air Tools, Power Tool, Wood Working Tools…and also providing an appropriate combination of price, quality, satisfying services and fast delivery. Its products are provided based on 3 fundamental factors:
1) Quality
2) Variety
3) Reliabiliy
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 1 Year |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Samples: |
US$ 70.41/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-01-23
China Hot selling CHINAMFG CHINAMFG A7 Truck Spare Parts Air Compressor Vg1560130080 manufacturer
Product Description
Quick Details
| Port: | HangZhou |
| Payment Terms: | L/C,T/T,Western Union,PayPal |
| Supply Ability: | 2000 Piece/Pieces per Month Air Condition Compressor |
| Warranty: | 6 month |
| Place of Origin: | ZheJiang China |
| Size: | Standard,Standard |
| Product Name: | Sinotruk CHINAMFG A7 truck spare parts Air Compressor VG1246130008 |
| weight: | OEM |
| OE NO.: | VG1560130080 |
| Material: | Original |
| Certification: | ISO |
| DELIVERY: | Prompt Delivery |
| Brand Name: | sinotruk |
| Car Model: | sinotruk |
| Type: | compressor |
| Packing: | Normal packing |
| Quality: | OEM Standard |
| WARRANTY: | 12 Months |
| Key words: | air compressor |
| Application: | Heavy Truck |
| Packaging Detail: | standard packing or as your request |
Who we are?
○The most professional truck and spare parts manufacturer in China;
○The leading truck and spare parts exporter in China;
○The most comprehensive truck and spare parts solution provider in China;
○The most worry-free and most satisfactory and reputable supplier for you in China.
○We can never let you down if you choose us!
FAQ
1)What about your packing?
Generally,our spare parts are packed in anti-rust paper,plastic bag,box,carton or according
to customer’s requirements.
2)What about your terms of payment?
L/C, T/T, D/P, Western Union, Paypal Money Gram, Others
3)What is your terms of delivery?
EXW,FOB,CFR,CIF
4)How about your delivery time?
Usually,it will take around 3~7 days after your advance payment,it depends on the items
and quantities of your order.
5)What is your sample policy?
We can supply the samples if the samples are in stock,but the customers will pay the sample
cost and the delivery cost(or freight collect)
Our Services
1.All of our products are with Professional Service.
2.We can offer all kinds of OEM Spare Parts according to the customer’s requirements.
3.We can offer Free Consultation of service information .
4.The dominance we kept all along is to provide the customers with Genuine Spare Parts,
5.Standard Export Package to protect the parts from long-distance delivery.
6.Professional sales and after sale service team, Timely and Efficiently to solve your problem.
7.We are willing to privide the High Quality,Reasonable Price and Perfect Service.
8.If you are not satisfied with our products, We can Provide Exchange and Return Service.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Guidance |
|---|---|
| Warranty: | 3~6 Months |
| Transport Package: | Box |
| Trademark: | Lianwo |
| Origin: | Jinan |
| Samples: |
US$ 100/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2024-01-22
China wholesaler Professional Silent Portable Oil Free Multiple Models Medical Dental Air Compressor manufacturer
Product Description
Professional Silent Portable Oil Free Multiple Models Medical Dental Air Compressor
Power: 600W
Volt./Hz: 110~240 / V50~60Hz
Speed: 1400/1750r.p.m
Air flow: 118L/minat0Bar
Noise level: 52dB
Max pressure: 8Bar
Restart pressure: 5Bar
Tank capacity: 24L
Weight: 24/32kg
Product size: 410*410*550mm
We CONCERNMED make one-stop shopping hospital medical equipment:
| Dental Equipment | Dental Chair |
| Dental Class B Autoclave | |
| Dental Intra-Oral Camera | |
| Dental Compressor | |
| Dental Handpiece | |
| Dental Ultrasonic Scaler | |
| Dental Cabinet | |
| Dental Instrument Washer | |
| Others Dental Equipment |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Condition: | New |
|---|---|
| Application: | Pet |
| Nature: | Specialized Equipment |
| Feature: | Un-waterproof |
| Usage Times: | Non-Disposable |
| Material: | Metal |
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2024-01-10
China manufacturer Portable Electric Air Pump Tire Inflator Air Compressor Pump air compressor repair near me
Product Description
Supply Ability
Supply Ability:
1000000 Piece/Pieces per Month
Packaging & Delivery
Packaging Details
opp bag+carton
Port
HangZhou, ZheJiang , HangZhou, Tianjiang
Lead Time :
| Quantity(Sets) | 1 – 5000 | >5000 |
| Est. Time(days) | 25 | To be negotiated |
Product Description
Descriptions
Portable Air Compressor Pump, Electric Air Pump Tire Inflator 12V DC with Pressure Gauge Plastic + ABS Quickly Inflate Or Deflate – The compact rechargeable electric air pump both inflates and deflates a variety of things in a quick amount of time: pool toys, vacuum bags, camping air beds, and more, making both setup and storage of your items easy and efficient Easy to Use – The inflatable mattress pump is compatible with 12V DC power supply.
To inflatable, just put the inflatable head at the filling hold, then press the switch.
Our electric air mattress pumps are simple to operate Easy and Quick – Simply turn your vehicle on, plug in the air compressor, and inflate! A high-flow pump inflates your tires up to 35 Liters per Minute, putting you back on the road quickly; includes a storage case for added conveninece Compact & Lightweight – Our high pressure air pump is convenient to pack and transport; Our quick inflatable air pump is easily stored for next use; The small size of this electric pump will spare more room for you; Electric air mattress pump is portable for operation independently by 1 person
Portable Air Compressor Pump, Electric Air Pump Tire Inflator 12V DC with Pressure Gauge
Operating Instructions:
With low noise.
Compact and portable, easy to use.
Provide pressure gauge and 3 nozzle adapters.
Ideal for inflating tires, balls, rubber floater, hovercraft and so on
Portable Air Compressor Pump, Electric Air Pump Tire Inflator 12V DC with Pressure Gauge
Notice:
Common user error: Inflator will only inflate to max pressure and then automatically shuts off. It will not turn on to inflate a tire that is already at max pressure.
Portable Air Compressor Pump, Electric Air Pump Tire Inflator 12V DC with Pressure Gauge
|
Product Spec. |
|
|
*Brand |
AUTOALL |
|
*Fit Car |
Universal |
|
*Model |
C57139 |
|
*Spec. |
Cylinder: 16mm 50cm air hose 3m cord with cigarette lighter plug Pressure gauge: 100-300psi for options Accessories: 2 nozzle adapters and 1 sports needle |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Job Classification: | Tire Pressure Gauge |
|---|---|
| Certificaton: | Ce |
| Product Name: | Portable Air Compressor Pump |
| Color: | Gold |
| Size: | Metal |
| Warranty: | 2 Years |
| Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
What is the difference between a piston and rotary screw compressor?
Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:
1. Operating Principle:
- Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
- Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.
2. Compression Method:
- Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
- Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.
3. Efficiency:
- Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
- Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.
4. Noise Level:
- Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
- Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.
5. Maintenance:
- Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
- Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.
6. Size and Portability:
- Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
- Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.
These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.


editor by CX 2024-01-05
China Good quality Oil Free Vacuum Pump Manufacturer 550W AC220V 100V 60Hz 50Hz Laboratory Medical Negative Pressure Pump Small Air Compressor Class F Copper Wire Motor air compressor lowes
Product Description
|
Model |
BST550AFZ/BSZ |
|
Voltage/frequency (V/Hz) |
220-240V/50Hz 100v-120v/60Hz |
|
Input power(W) |
≤400 |
|
Speed (r/min) |
≥1350 1650 |
|
Primary vacuumKPa |
-94KPa |
|
Secondary vacuumKPa |
-101KPa |
|
Restart pressure (KPa) |
0KPa |
|
Rated volume flow (m3/h) |
≥7.2m3/h @0KPa; |
|
Noise dB(A) |
≤60dB(A) |
|
Ambient temperature ºC |
-20~65 ºC |
|
Insulation Class |
F |
|
Cold insulation resistance (MΩ) |
≥100MΩ |
|
Voltage resistance |
1500V/50Hz 1min (No breakdown) |
|
Thermal protector |
Automatic reset 155±5ºC |
|
Capacitance (μF) |
20μF±5% 50μF±5% |
|
Net weight (Kg) |
7.8Kg |
|
Installation Dimensions (mm) |
203.2×88.9mm(Install thread 4-M6) |
|
External Dimensions (mm) |
266.8*128*212.7mm |
| Typical application | |
| Respirator (ventilator) | oxygenerator |
| Disinfectant sprayer | Blood analyzer |
| Clinical aspirator | Dialysis / hemodialysis |
| Dental vacuum drying oven | Air suspension system |
| Vending machines / coffee blenders and coffee machines | Massage chair |
| Chromatographic analyzer | Teaching instrument platform |
| On board access control system | Airborne oxygen generator |
Why choose CHINAMFG air compressor
1. It saves 10-30% energy than the air compressor produced by ordinary manufacturers.
2. It is widely used in medical oxygen generator and ventilator .
3. A large number of high-speed train and automobile application cases, supporting – 41 to 70 ºC, 0-6000 CHINAMFG above sea level .
4. Medium and high-end quality, with more than 7000 hours of trouble free operation for conventional products and more than 15000 hours of trouble free operation for high-end products.
5. Simple operation, convenient maintenance and remote guidance.
6. Faster delivery time, generally completed within 25 days within 1000 PCs.
Machine Parts
Name: Motor
Brand: COMBESTAIR
Original: China
1.The coil adopts the fine pure copper enameled wire, and the rotor adopts the famous brand silicon steel sheet such as ZheJiang baosteel.
2.The customer can choose the insulation grade B or F motor according to What he wants.
3.The motor has a built-in thermal protector, which can select external heat sensor.
4.Voltage from AC100V ~120V, 200V ~240V, 50Hz / 60Hz, DC6V~200V optional ; AC motor can choose double voltage double frequency ; DC Motor can choose the control of the infinitely variable speed.
Machine Parts
Name: Bearing
Brand: ERB , CHINAMFG , NSK
Original: China ect.
1.Standard products choose the special bearing ‘ERB’ in oil-free compressor, and the environment temperature tolerance from -50ºC to 180 ºC . Ensure no fault operation for 20,000 hours.
2.Customers can select TPI, NSK and other imported bearings according to the working condition.
Machine Parts
Name: Valve plates
Brand: SANDVIK
Original: Sweden
1.Custom the valve steel of Sweden SANDVIK; Good flexibility and long durability.
2.Thickness from 0.08mm to 1.2mm, suitable for maximum pressure from 0.8 MPa to 1.2 MPa.
Machine Parts
Name: Piston ring
Brand: COMBESTAIR-OEM , Saint-Gobain
Original: China , France
1.Using domestic famous brand–Polytetrafluoroethylene composite material; Wear-resistant high temperature; Ensure more than 10,000 hours of service life.
2.High-end products: you can choose the ST.gobain’s piston ring from the American import.
| serial number |
Code number | Name and specification | Quantity | Material | Note |
| 1 | 212571109 | Fan cover | 2 | Reinforced nylon 1571 | |
| 2 | 212571106 | Left fan | 1 | Reinforced nylon 1571 | |
| 3 | 212571101 | Left box | 1 | Die-cast aluminum alloy YL104 | |
| 4 | 212571301 | Connecting rod | 2 | Die-cast aluminum alloy YL104 | |
| 5 | 212571304 | Piston cup | 2 | PHB filled PTFE | |
| 6 | 212571302 | Clamp | 2 | Die-cast aluminum alloy YL102 | |
| 7 | 7050616 | Screw of cross head | 2 | Carbon structural steel of cold heading | M6•16 |
| 8 | 212571501 | Air cylinder | 2 | Thin wall pipe of aluninun alloy 6A02T4 | |
| 9 | 17103 | Seal ring of Cylinder | 2 | Silicone rubber | |
| 10 | 212571417 | Sealing ring of cylinder cover | 2 | Silicone rubber | |
| 11 | 212571401 | Cylinder head | 2 | Die-cast aluminum alloy YL102 | |
| 12 | 7571525 | Screw of inner hexagon Cylinder head | 12 | M5•25 | |
| 13 | 17113 | Sealing ring of connecting pipe | 4 | Silicong rubber | |
| 14 | 212571801 | Connecting pipe | 2 | Aluminum and aluminum alloy connecting rod LY12 | |
| 15 | 7100406 | Screw of Cross head | 4 | 1Cr13N19 | M4•6 |
| 16 | 212571409 | Limit block | 2 | Die-cast aluminum alloy YL102 | |
| 17 | 000402.2 | Air outlet valve | 2 | 7Cr27 quenching steel belt of The Swedish sandvik | |
| 18 | 212571403 | valve | 2 | Die-cast aluminum alloy YL102 | |
| 19 | 212571404 | Air inlet valve | 2 | 7Cr27 quenching steel belt of The Swedish sandvik | |
| 20 | 212571406 | Metal gasket | 2 | Stainless steel plate of heat and acidresistance | |
| 21 | 212571107 | Right fan | 1 | Reinforced nylon 1571 | |
| 22 | 212571201 | Crank | 2 | Gray castiron H20-40 | |
| 23 | 14040 | Bearing 6006-2Z | 2 | ||
| 24 | 70305 | Tighten screw of inner hexagon flat end | 2 | M8•8 | |
| 25 | 7571520 | Screw of inner hexagon Cylinder head | 2 | M5•20 | |
| 26 | 212571102 | Right box | 1 | Die-cast aluminum alloy YL104 | |
| 27 | 6P-4 | Lead protective ring | 1 | ||
| 28 | 7095712-211 | Hexagon head bolt | 2 | Carbon structural steel of cold heading | M5•152 |
| 29 | 715710-211 | Screw of Cross head | 2 | Carbon structural steel of cold heading | M5•120 |
| 30 | 16602 | Light spring washer | 4 | ø5 | |
| 31 | 212571600 | Stator | 1 | ||
| 32 | 70305 | Lock nut of hexagon flange faces | 2 | ||
| 33 | 212571700 | Rotor | 1 | ||
| 34 | 14032 | Bearing 6203-2Z | 2 |
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our factory is located in Linbei industrial area No.30 HangZhou City of ZHangZhoug Province, China
Q3: Warranty terms of your machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: Generally, 1000 pcs can be delivered within 25 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome
Q7:Can you accept non-standard customization?
A7:We have the ability to develop new products and can customize, develop and research according to your requirements
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Remote Guided Maintenance |
|---|---|
| Warranty: | 2 Years |
| Principle: | Mixed-Flow Compressor |
| Samples: |
US$ 60/Piece
1 Piece(Min.Order) | Order Sample |
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
Are there differences between single-stage and two-stage air compressors?
Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:
Compression Stages:
The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.
Compression Process:
In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.
Pressure Output:
The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.
Efficiency:
Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.
Intercooling:
Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.
Applications:
The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.
It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.
In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2024-01-05
China manufacturer High Performance Stationary Screw Air Compressor for Painting lowes air compressor
Product Description
0.5-80 M3/Min 6-40 Bar 5.5-400 Kw Electrical Stationary Industrial AC Power Direct Driven/Coupled Rotary Screw Air Compressors Advantages
1.DENAIR Enhanced energy saving screw air compressor reached the super energy saving level
2.Energy Efficient Index 1(EEI 1) approved according to GB19153-2009, the energy consumption is 10%~15% lower than EEI 2.
3.CHINAMFG air compressor design with 72 types of technology patent, real bigger air flow
4.State-of-the-art screw element, original Germany CHINAMFG air end, ladvanced SAP profile design, superior Sweden CHINAMFG element bearings
5.CHINAMFG air compressdor dopts world-renowned components, such as Schneider electronics from France, DENAIR filters from Germany, Danfoss pressure sensor from Denmark, etc. contribute to guarantee the compressor longer service life.
6.Smart touch screen design and 0 pressure drop design
7.Higher efficiency cooling system and electrical motor
8.Stainless steel pipes, reasonable inner design, ensure long service life without maintenance.
Technical Parameters Of Energy Saving Rotary Screw Air Compressor
| Model | Maxinmum working | Capacity(FAD)* | Installed motor power | Driving mode& | Noise | Dimensions(mm) | Weight | Air outlet | |||||||
| pressure | 50 HZ | 60 HZ | Cooling method | level** | pipe diameter | ||||||||||
| bar(g) | psig | m3/min | cfm | m3/min | cfm | kw | hp | dB(A) | L | W | H | kg | |||
| DA-5 | 7.5 | 109 | 0.80 | 28 | 0.80 | 28 | 5.5 | 7.5 | Belt Driven | 75 | 900 | 600 | 860 | 315 | G3/4″ |
| 8.5 | 123 | 0.78 | 28 | 0.78 | 28 | 5.5 | 7.5 | Air Cooling | 75 | 900 | 600 | 860 | |||
| DA-7 | 7.5 | 109 | 1.09 | 39 | 1.09 | 39 | 7.5 | 10 | 75 | 900 | 600 | 860 | 315 | G3/4″ | |
| 8.5 | 123 | 1.07 | 38 | 1.07 | 38 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| 10.5 | 152 | 0.92 | 32 | 0.91 | 32 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| 13.0 | 189 | 0.73 | 26 | 0.72 | 26 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| DA-11 | 7.5 | 109 | 1.66 | 59 | 1.66 | 59 | 11 | 15 | 75 | 1230 | 650 | 900 | 324 | G3/4″ | |
| 8.5 | 123 | 1.64 | 58 | 1.64 | 58 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| 10.5 | 152 | 1.45 | 51 | 1.45 | 51 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| 13.0 | 189 | 1.13 | 40 | 1.12 | 40 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| DA-15 | 7.5 | 109 | 2.54 | 90 | 2.53 | 89 | 15 | 20 | Direct Driven | 75 | 1465 | 990 | 1345 | 453 | G1-1/4″ |
| 8.5 | 123 | 2.51 | 88 | 2.50 | 88 | 15 | 20 | Air Cooling | 75 | 1465 | 990 | 1345 | |||
| 10.5 | 152 | 1.97 | 70 | 1.86 | 66 | 15 | 20 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 1.91 | 67 | 1.83 | 65 | 15 | 20 | 75 | 1465 | 990 | 1345 | ||||
| DA-18 | 7.5 | 109 | 3.04 | 107 | 3.65 | 129 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | 453 | G1-1/4″ | |
| 8.5 | 123 | 3.03 | 107 | 3.63 | 128 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| 10.5 | 152 | 3.00 | 106 | 2.38 | 84 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 1.91 | 67 | 2.36 | 83 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| DA-22 | 7.5 | 109 | 3.57 | 126 | 3.65 | 129 | 22 | 30 | 75 | 1465 | 990 | 1345 | 477 | G1-1/4″ | |
| 8.5 | 123 | 3.55 | 125 | 3.63 | 128 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| 10.5 | 152 | 3.00 | 106 | 2.38 | 84 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 2.97 | 105 | 2.36 | 83 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| DA-30 | 7.5 | 109 | 5.28 | 187 | 4.49 | 159 | 30 | 40 | 85 | 1600 | 1250 | 1550 | 682 | G1-1/2″ | |
| 8.5 | 123 | 5.26 | 186 | 4.48 | 158 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 5.21 | 184 | 4.47 | 158 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 3.45 | 122 | 3.58 | 126 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| DA-37 | 7.5 | 109 | 6.54 | 231 | 6.33 | 224 | 37 | 50 | 85 | 1600 | 1250 | 1550 | 728 | G1-1/2″ | |
| 8.5 | 123 | 6.52 | 230 | 6.30 | 222 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 5.21 | 184 | 4.47 | 158 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 5.16 | 182 | 4.43 | 156 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| DA-45 | 7.5 | 109 | 7.67 | 271 | 7.79 | 275 | 45 | 60 | 85 | 1600 | 1250 | 1550 | 728 | G1-1/2″ | |
| 8.5 | 123 | 7.62 | 269 | 7.76 | 574 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 6.46 | 228 | 6.24 | 220 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 6.41 | 226 | 4.44 | 157 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| DA-55 | 7.5 | 109 | 9.76 | 345 | 9.14 | 323 | 55 | 75 | 85 | 1876 | 1326 | 1700 | 1310 | G2″ | |
| 8.5 | 123 | 9.67 | 342 | 9.06 | 320 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| 10.5 | 152 | 7.53 | 266 | 7.74 | 273 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| 13.0 | 189 | 7.40 | 261 | 6.30 | 222 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| DA-75 | 7.5 | 109 | 14.21 | 502 | 11.72 | 414 | 75 | 100 | 85 | 1876 | 1326 | 1700 | 1325 | G2″ | |
| 8.5 | 123 | 12.55 | 443 | 11.63 | 411 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| 10.5 | 152 | 9.51 | 336 | 11.43 | 404 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| 13.0 | 189 | 9.23 | 326 | 8.75 | 309 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| DA-90(W) | 7.5 | 109 | 16.62 | 587 | 17.01 | 601 | 90 | 120 | Direct Driven | 72 | 2450 | 1800 | 1700 | 2450 | DN80 |
| 8.5 | 123 | 16.37 | 578 | 16.82 | 594 | 90 | 120 | Air Cooling Or | 72 | 2450 | 1800 | 1700 | |||
| 10.5 | 152 | 14.21 | 502 | 14.87 | 525 | 90 | 120 | Water Cooling | 72 | 2450 | 1800 | 1700 | |||
| 13.0 | 189 | 11.77 | 416 | 11.27 | 398 | 90 | 120 | 72 | 2450 | 1800 | 1700 | ||||
| DA-110(W) | 7.5 | 109 | 20.13 | 711 | 19.10 | 674 | 110 | 150 | 72 | 2450 | 1800 | 1700 | 2500 | DN80 | |
| 8.5 | 123 | 20.05 | 708 | 19.06 | 673 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| 10.5 | 152 | 16.33 | 576 | 17.01 | 601 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| 13.0 | 189 | 14.11 | 498 | 14.68 | 518 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| DA-132(W) | 7.5 | 109 | 22.85 | 807 | 24.37 | 861 | 132 | 175 | 72 | 2450 | 1800 | 1700 | 2600 | DN80 | |
| 8.5 | 123 | 22.73 | 802 | 24.23 | 856 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| 10.5 | 152 | 19.88 | 702 | 18.95 | 669 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| 13.0 | 189 | 16.51 | 583 | 16.82 | 594 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| DA-160(W) | 7.5 | 109 | 26.92 | 950 | 27.90 | 985 | 160 | 215 | 78 | 2650 | 1700 | 1850 | 3200 | DN80 | |
| 8.5 | 123 | 26.86 | 949 | 27.76 | 980 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| 10.5 | 152 | 22.44 | 792 | 23.97 | 846 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| 13.0 | 189 | 19.63 | 693 | 18.82 | 664 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| DA-185(W) | 7.5 | 109 | 28.89 | 1571 | 30.53 | 1078 | 185 | 250 | 78 | 2650 | 1700 | 1850 | 3300 | DN80 | |
| 8.5 | 123 | 28.84 | 1018 | 30.44 | 1075 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| 10.5 | 152 | 25.11 | 886 | 27.46 | 970 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| 13.0 | 189 | 22.08 | 780 | 23.69 | 836 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| DA-200(W) | 7.5 | 109 | 31.88 | 1126 | 30.53 | 1078 | 200 | 270 | 80 | 3000 | 1950 | 2030 | 4750 | DN100 | |
| 8.5 | 123 | 31.82 | 1124 | 30.44 | 1075 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 28.48 | 1006 | 30.22 | 1067 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 25.00 | 883 | 27.07 | 956 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| DA-220(W) | 7.5 | 109 | 36.20 | 1278 | 37.22 | 1314 | 220 | 300 | 80 | 3000 | 1950 | 2030 | 4800 | DN100 | |
| 8.5 | 123 | 36.15 | 1276 | 37.17 | 1312 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 31.71 | 1120 | 33.25 | 1174 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 28.48 | 1006 | 27.07 | 956 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| DA-250(W) | 7.5 | 109 | 43.31 | 1529 | 42.87 | 1514 | 250 | 350 | 80 | 3000 | 1950 | 2030 | 4850 | DN100 | |
| 8.5 | 123 | 43.24 | 1527 | 41.30 | 1458 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 36.03 | 1272 | 37.04 | 1308 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 31.55 | 1114 | 33.15 | 1170 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| DA-280(W) | 7.5 | 109 | 46.59 | 1645 | 47.16 | 1665 | 280 | 375 | 85 | 3700 | 2300 | 2450 | 5200 | DN125 | |
| 8.5 | 123 | 46.53 | 1643 | 45.64 | 1612 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| 10.5 | 152 | 42.95 | 1516 | 42.56 | 1503 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| 13.0 | 189 | 35.89 | 1267 | 36.95 | 1305 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| DA-315(W) | 7.5 | 109 | 53.16 | 1877 | 50.88 | 1797 | 315 | 425 | 85 | 3700 | 2300 | 2450 | 6000 | DN125 | |
| 8.5 | 123 | 52.63 | 1858 | 50.83 | 1795 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| 10.5 | 152 | 43.05 | 1520 | 46.27 | 1634 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| 13.0 | 189 | 42.93 | 1516 | 40.32 | 1424 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| DA-355(W) | 7.5 | 109 | 63.37 | 2238 | 58.12 | 2052 | 355 | 475 | 85 | 4500 | 2500 | 2450 | 7000 | DN125 | |
| 8.5 | 123 | 63.16 | 2230 | 56.54 | 1997 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| 10.5 | 152 | 52.63 | 1858 | 51.57 | 1821 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| 13.0 | 189 | 43.79 | 1546 | 45.35 | 1601 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| DA-400(W) | 7.5 | 109 | 70.99 | 2507 | 61.72 | 2179 | 400 | 550 | 85 | 4500 | 2500 | 2450 | 8000 | DN125 | |
| 8.5 | 123 | 70.64 | 2494 | 59.72 | 2109 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
| 10.5 | 152 | 52.63 | 1858 | 56.52 | 1996 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
| 13.0 | 189 | 46.34 | 1636 | 51.35 | 1813 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
***) EEI 1- Energy Effiency Index 1, which refers to enhanced energy saving series
Specifications are subject to change without notice.
DENAIR Factory & Product Lines
DENAIR Exhibition
We carefully selected for you the classic case
Enhanced Energy Saving Air Compressor in Oman
Project Name: Sandblasting in Muscat, Oman.
Product Name: 75KW 100HP Enhanced Energy Saving screw air compressor EEI 1 (Energy Efficiency Index 1) with air dryer, air receiver tank and air filters.
Model No. & Qty: DA-75+ x 1.
Working Time: From June, 2016 till now
Event: In June, 2015, 1 set of CHINAMFG enhanced energy saving air compressor system was installed in Muscat Oman. This is the first project finished by CHINAMFG distributor in Oman. Our partner Mr. Hari shared the photos at working site to us as a good starting. That means more and more CHINAMFG energy saving solutions will contribute to the industries in Oman in the near future. CHINAMFG air compressor factory and air compressor distributor will try the best to provide top quality products, cost effective solution and excellent service for local users in Oman. In order to ensure the most professional service, the distributor plans to send 2 service engineers to CHINAMFG factory in ZheJiang for training and learnin. We will update the news at that time.
FAQ
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2:No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
.
Q3: Warranty terms of your air compressor machine?
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the air compressor?
A4: Yes, of course.
Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can air compressors be used for cleaning and blowing dust?
Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:
1. Cleaning Machinery and Equipment:
Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.
2. Dusting Surfaces:
Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.
3. Cleaning HVAC Systems:
Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.
4. Blowing Dust in Workshops:
In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.
5. Cleaning Electronics and Computer Equipment:
Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.
6. Industrial Cleaning Applications:
Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.
When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.
Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
What is the impact of tank size on air compressor performance?
The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:
1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.
2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.
3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.
4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.
5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.
It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.
Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.


editor by CX 2023-12-30