Product Description
Oil free compressed air: in accordance with ISO 8573-1:2001 grade 0, which specifies the food and beverage, pharmaceutical, textile, and electronics industries
Reducing energy costs: Combining variable speed operation with Nirvana HPM Motors, as well as advanced system controllers, provide ultra efficient performance
Stronger reliability: stainless steel components, double row sealing, and precision machined rotors with UltraCoat protection ensure smooth operation
Reduce lubricant replacement: The industry-leading Ultra Coolant provides up to 8000 hours of lubricant usage time, which is 8 times the lifespan of conventional lubricants
High temperature working environment: Long life components are designed to withstand the highest ambient temperature of 46 º C
| Water Cooling | |||||||||||
| Model | Hz | FAD | Dimension | Weight | |||||||
| m³/min | Width (mm) | Length (mm) | Height (mm) | kg | |||||||
| SL-37 | 50 | 6 | 1372 | 2248 | 1914 | 2387/2410 | |||||
| SM-37 | 50 | 5.1 | 1372 | 2248 | 1914 | 2387/2410 | |||||
| SH-37 | 50 | / | 1372 | 2248 | 1914 | 2387/2410 | |||||
| SL-45 | 50 | 7.6 | 1372 | 2248 | 1914 | 2497/2520 | |||||
| SM-45 | 50 | 6.5 | 1372 | 2248 | 1914 | 2497/2520 | |||||
| SH-45 | 50 | / | 1372 | 2248 | 1914 | 2497/2520 | |||||
| SL-55 | 50 | 9.6 | 1372 | 2248 | 1914 | 2577/2600 | |||||
| SM-55 | 50 | 8.6 | 1372 | 2248 | 1914 | 2577/2600 | |||||
| SH-55 | 50 | 7.7* | 1372 | 2248 | 1914 | 2577/2600 | |||||
| SL-75 | 50 | 12.5 | 1372 | 2248 | 1914 | 2682/2705 | |||||
| SM-75 | 50 | 11.6 | 1372 | 2248 | 1914 | 2682/2705 | |||||
| SH-75 | 50 | 10.7* | 1372 | 2248 | 1914 | 2682/2705 | |||||
| SL-90 | 50 | 15.9 | 1588 | 2692 | 2362/1841 | 3040/3195 | |||||
| SM-90 | 50 | 13.6 | 1588 | 2692 | 2362/1842 | 3040/3195 | |||||
| SH-90 | 50 | 13 | 1588 | 2692 | 2362/1843 | 3040/3195 | |||||
| SL-110 | 50 | 19.4 | 1588 | 2692 | 2362/1844 | 3095/3250 | |||||
| SM-110 | 50 | 18 | 1588 | 2692 | 2362/1845 | 3095/3250 | |||||
| SH-110 | 50 | 15.3 | 1588 | 2692 | 2362/1846 | 3095/3250 | |||||
| SL-132 | 50 | 22.8 | 1588 | 2692 | 2362/1847 | 3274/3429 | |||||
| SM-132 | 50 | 21.4 | 1588 | 2692 | 2362/1848 | 3274/3429 | |||||
| SH-132 | 50 | 18.8 | 1588 | 2692 | 2362/1849 | 3274/3429 | |||||
| SL-150 | 50 | 25.9 | 1588 | 2692 | 2362/1850 | 3275/3430 | |||||
| SM-150 | 50 | 24.6 | 1588 | 2692 | 2362/1851 | 3275/3430 | |||||
| SH-150 | 50 | 22.1 | 1588 | 2692 | 2362/1852 | 3275/3430 | |||||
| SL-200 | 50 | 35 | 1930 | 3048 | 2438/2571 | 4186 | |||||
| SM-200 | 50 | 32.6 | 1930 | 3048 | 2438/2571 | 4186 | |||||
| SH-200 | 50 | 27.4 | 1930 | 3048 | 2438/2571 | 4186 | |||||
| SL-250 | 50 | 45.2 | 1930 | 3048 | 2438/2026 | 4306 | |||||
| SM-250 | 50 | 41.2 | 1930 | 3048 | 2438/2571 | 4306 | |||||
| SH-250 | 50 | 35.5 | 1930 | 3048 | 2438/2571 | 4306 | |||||
| SL-300 | 50 | 43.6 | 1930 | 3048 | 2438/2571 | 4366 | |||||
| SM-300 | 50 | 43.5 | 1930 | 3048 | 2438/2030 | 4366 | |||||
| SH-300 | 50 | 43.3 | 1930 | 3048 | 2438/2031 | 4366 | |||||
| Air Cooling | |||||||||||
| Model | HZ | FAD | Dimension | Weight | |||||||
| cfm | Width (mm) | Length (mm) | Height (mm) | Ib | |||||||
| L-50 | 60 | 214 | 54 | 88.5 | 75.4 | 5111 | |||||
| H-50 | 60 | 179 | 54 | 88.5 | 75.4 | 5111 | |||||
| HH-50 | 60 | / | 54 | 88.5 | 75.4 | 5111 | |||||
| L-60 | 60 | 266 | 54 | 88.5 | 75.4 | 5364 | |||||
| H-60 | 60 | 229 | 54 | 88.5 | 75.4 | 5364 | |||||
| HH-60 | 60 | / | 54 | 88.5 | 75.4 | 5364 | |||||
| L-75 | 60 | 333 | 54 | 88.5 | 75.4 | 5364 | |||||
| H-75 | 60 | 288 | 54 | 88.5 | 75.4 | 5364 | |||||
| HH-75 | 60 | 268* | 54 | 88.5 | 75.4 | 5500 | |||||
| L-100 | 60 | 419 | 54 | 88.5 | 75.4 | 5500 | |||||
| H-100 | 60 | 407 | 54 | 88.5 | 75.4 | 5500 | |||||
| HH-100 | 60 | 378* | 54 | 88.5 | 75.4 | 5500 | |||||
| L-125 | 60 | 585 | 62.5 | 106 | 93.3/72.5 | 6437/6709** | |||||
| H-125 | 60 | 523 | 62.5 | 106 | 93.3/72.5 | 6437/6709** | |||||
| HH-125 | 60 | 477 | 62.5 | 106 | 93.3/72.5 | 6437/6709** | |||||
| L-150 | 60 | 690 | 62.5 | 106 | 93.3/72.5 | 6452/6724** | |||||
| H-150 | 60 | 690 | 62.5 | 106 | 93.3/72.5 | 6452/6724** | |||||
| HH-150 | 60 | 565 | 62.5 | 106 | 93.3/72.5 | 6452/6724** | |||||
| L-200 | 60 | 911 | 62.5 | 106 | 93.3/72.5 | 7099/7385** | |||||
| H-200 | 60 | 854 | 62.5 | 106 | 93.3/72.5 | 7099/7385** | |||||
| HH-200 | 60 | 759 | 62.5 | 106 | 93.3/72.5 | 7099/7385** | |||||
| L-250 | 60 | 1182 | 76 | 120 | 96/80** | 8820 | |||||
| H-250 | 60 | 1070 | 76 | 120 | 96/80** | 8820 | |||||
| HH-250 | 60 | 905 | 76 | 120 | 96/80** | 8820 | |||||
| L-300 | 60 | 1398 | 76 | 120 | 96/80** | 9090 | |||||
| H-300 | 60 | 1264 | 76 | 120 | 96/80** | 9090 | |||||
| HH-300 | 60 | 1112 | 76 | 120 | 96/80** | 9090 | |||||
| L-350 | 60 | 1600 | 76 | 120 | 96/80** | 9610 | |||||
| H-350 | 60 | 1501 | 76 | 120 | 96/80** | 9610 | |||||
| HH-350 | 60 | 1330 | 76 | 120 | 96/80** | 9610 | |||||
| L-400 | 60 | 1539 | 76 | 120 | 96/80** | 9610 | |||||
| H-400 | 60 | 1535 | 76 | 120 | 96/80** | 9610 | |||||
| HH-400 | 60 | 1527 | 76 | 120 | 96/80** | 9610 | |||||
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Service |
|---|---|
| Warranty: | One Year |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What are the different types of air compressors?
There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:
1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.
2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.
3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.
4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.
5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.
6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.
These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.


editor by CX 2024-02-06